Skip to content

Adapters

Adapters provide specialized interfaces for working with key-value stores. Unlike wrappers, adapters don't implement the AsyncKeyValue protocol - instead, they provide alternative APIs tailored for specific use cases.

Available Adapters

Adapter Description
DataclassAdapter Type-safe storage/retrieval of dataclass models with transparent serialization
PydanticAdapter Type-safe storage/retrieval of Pydantic models with transparent serialization
RaiseOnMissingAdapter Optional raise-on-missing behavior for get operations

Adapters vs Wrappers

Wrappers:

  • Implement the AsyncKeyValue protocol
  • Can be stacked and used anywhere a store is expected
  • Add transparent functionality (compression, encryption, etc.)
  • Don't change the API

Adapters:

  • Provide a different API
  • Cannot be used in place of a store
  • Add type safety and specialized behavior
  • Transform how you interact with the store

Adapter Details

DataclassAdapter

The DataclassAdapter provides type-safe storage and retrieval of Python dataclass models. It automatically handles serialization and validation using Pydantic for validation.

Use Cases

  • Type-safe data storage with dataclasses
  • Automatic validation on retrieval
  • Working with Python's native dataclass decorator
  • Ensuring data integrity

Basic Example

from dataclasses import dataclass
from key_value.aio.stores.memory import MemoryStore
from key_value.aio.adapters.dataclass import DataclassAdapter

@dataclass
class User:
    name: str
    email: str
    age: int

# Create adapter
adapter = DataclassAdapter(
    key_value=MemoryStore(),
    dataclass_type=User
)

# Store a user (type-safe)
user = User(name="Alice", email="alice@example.com", age=30)
await adapter.put(key="user:123", value=user, collection="users")

# Retrieve and get a validated model
retrieved_user = await adapter.get(key="user:123", collection="users")
if retrieved_user:
    print(retrieved_user.name)  # Type-safe: "Alice"
    print(retrieved_user.email)  # Type-safe: "alice@example.com"

PydanticAdapter

The PydanticAdapter provides type-safe storage and retrieval of Pydantic models. It automatically handles serialization and validation, ensuring data integrity.

PydanticAdapter

Bases: BasePydanticAdapter[T]

Adapter around a KVStore-compliant Store that allows type-safe persistence of Pydantic models.

_default_collection instance-attribute

_default_collection = default_collection

_is_list_model instance-attribute

_is_list_model = origin is list

_key_value instance-attribute

_key_value = key_value

_raise_on_validation_error instance-attribute

_raise_on_validation_error = raise_on_validation_error

_type_adapter instance-attribute

_type_adapter = TypeAdapter[T](pydantic_model)

__init__

__init__(
    key_value,
    pydantic_model,
    default_collection=None,
    raise_on_validation_error=False,
)

Create a new PydanticAdapter.

Parameters:

Name Type Description Default
key_value AsyncKeyValue

The KVStore to use.

required
pydantic_model type[T]

The Pydantic model to use. Can be a single Pydantic model or list[Pydantic model].

required
default_collection str | None

The default collection to use.

None
raise_on_validation_error bool

Whether to raise a DeserializationError if validation fails during reads. Otherwise, calls will return None if validation fails.

False

Raises:

Type Description
TypeError

If pydantic_model is a sequence type other than list (e.g., tuple is not supported).

_get_model_type_name

_get_model_type_name()

Return the model type name for error messages.

Use Cases

  • Type-safe data storage
  • Automatic validation on retrieval
  • Working with complex data models
  • Ensuring data integrity

Basic Example

from pydantic import BaseModel
from key_value.aio.stores.memory import MemoryStore
from key_value.aio.adapters.pydantic import PydanticAdapter

class User(BaseModel):
    name: str
    email: str
    age: int

# Create adapter
adapter = PydanticAdapter(
    key_value=MemoryStore(),
    pydantic_model=User
)

# Store a user (type-safe)
user = User(name="Alice", email="alice@example.com", age=30)
await adapter.put(key="user:123", value=user, collection="users")

# Retrieve and get a validated model
retrieved_user = await adapter.get(key="user:123", collection="users")
if retrieved_user:
    print(retrieved_user.name)  # Type-safe: "Alice"
    print(retrieved_user.email)  # Type-safe: "alice@example.com"

Storing Lists of Models

The PydanticAdapter supports storing lists of Pydantic models:

from pydantic import BaseModel
from key_value.aio.stores.memory import MemoryStore
from key_value.aio.adapters.pydantic import PydanticAdapter

class User(BaseModel):
    name: str
    email: str

# Create adapter for list of users
adapter = PydanticAdapter(
    key_value=MemoryStore(),
    pydantic_model=list[User]
)

# Store a list of users
users = [
    User(name="Alice", email="alice@example.com"),
    User(name="Bob", email="bob@example.com"),
]
await adapter.put(key="all-users", value=users, collection="users")

# Retrieve the list
retrieved_users = await adapter.get(key="all-users", collection="users")
if retrieved_users:
    for user in retrieved_users:
        print(user.name)  # Type-safe access

Validation Error Handling

By default, the adapter returns None if validation fails. You can configure it to raise an error instead:

from key_value.aio.stores.memory import MemoryStore
from key_value.aio.adapters.pydantic import PydanticAdapter
from key_value.shared.errors import DeserializationError

adapter = PydanticAdapter(
    key_value=MemoryStore(),
    pydantic_model=User,
    raise_on_validation_error=True
)

# Manually corrupt data in the underlying store
await adapter._key_value.put(
    key="user:123",
    value={"name": "Alice"},  # Missing required 'email' field
    collection="users"
)

try:
    user = await adapter.get(key="user:123", collection="users")
except DeserializationError as e:
    print(f"Validation failed: {e}")

Default Collection

Set a default collection to avoid repeating it in every call:

adapter = PydanticAdapter(
    key_value=MemoryStore(),
    pydantic_model=User,
    default_collection="users"
)

# No need to specify collection
await adapter.put(key="user:123", value=user)
user = await adapter.get(key="user:123")

Batch Operations

The PydanticAdapter supports batch operations for better performance:

# Store multiple users
users = [
    User(name="Alice", email="alice@example.com", age=30),
    User(name="Bob", email="bob@example.com", age=25),
    User(name="Charlie", email="charlie@example.com", age=35),
]

await adapter.put_many(
    keys=["user:1", "user:2", "user:3"],
    values=users,
    collection="users"
)

# Retrieve multiple users
retrieved = await adapter.get_many(
    keys=["user:1", "user:2", "user:3"],
    collection="users"
)

for user in retrieved:
    if user:
        print(user.name)

TTL Support

The PydanticAdapter supports TTL for automatic expiration:

# Store with TTL
await adapter.put(
    key="session:abc",
    value=session_data,
    collection="sessions",
    ttl=3600  # Expires in 1 hour
)

# Get with TTL information
session, ttl = await adapter.ttl(key="session:abc", collection="sessions")
if session:
    print(f"Session expires in {ttl} seconds")

Complex Models

The PydanticAdapter works with complex nested models:

from pydantic import BaseModel
from datetime import datetime

class Address(BaseModel):
    street: str
    city: str
    country: str

class User(BaseModel):
    name: str
    email: str
    address: Address
    created_at: datetime

adapter = PydanticAdapter(
    key_value=MemoryStore(),
    pydantic_model=User
)

user = User(
    name="Alice",
    email="alice@example.com",
    address=Address(
        street="123 Main St",
        city="New York",
        country="USA"
    ),
    created_at=datetime.now()
)

await adapter.put(key="user:123", value=user, collection="users")
retrieved = await adapter.get(key="user:123", collection="users")

if retrieved:
    print(retrieved.address.city)  # Type-safe: "New York"

RaiseOnMissingAdapter

The RaiseOnMissingAdapter changes the behavior of get operations to raise an error instead of returning None when a key is not found.

RaiseOnMissingAdapter

Adapter around a KVStore that raises on missing values for get/get_many/ttl/ttl_many.

When raise_on_missing=True, methods raise MissingKeyError instead of returning None.

key_value instance-attribute

key_value = key_value

__init__

__init__(key_value)

delete async

delete(key, *, collection=None)

Delete a key-value pair from the specified collection.

Parameters:

Name Type Description Default
key str

The key to delete the value from.

required
collection str | None

The collection to delete the value from. If no collection is provided, it will use the default collection.

None

delete_many async

delete_many(keys, *, collection=None)

Delete multiple key-value pairs from the specified collection.

Parameters:

Name Type Description Default
keys Sequence[str]

The keys to delete the values from.

required
collection str | None

The collection to delete keys from. If no collection is provided, it will use the default collection.

None

Returns:

Type Description
int

The number of keys deleted.

get async

get(
    key: str,
    *,
    collection: str | None = None,
    raise_on_missing: Literal[False] = False,
) -> dict[str, Any] | None
get(
    key: str, *, collection: str | None = None, raise_on_missing: Literal[True]
) -> dict[str, Any]
get(key, *, collection=None, raise_on_missing=False)

Retrieve a value by key from the specified collection.

Parameters:

Name Type Description Default
key str

The key to retrieve the value from.

required
collection str | None

The collection to retrieve the value from. If no collection is provided, it will use the default collection.

None
raise_on_missing bool

Whether to raise a MissingKeyError if the key is not found.

False

Returns:

Type Description
dict[str, Any] | None

The value associated with the key. If the key is not found, None will be returned.

get_many async

get_many(
    keys: Sequence[str],
    *,
    collection: str | None = None,
    raise_on_missing: Literal[False] = False,
) -> list[dict[str, Any] | None]
get_many(
    keys: Sequence[str],
    *,
    collection: str | None = None,
    raise_on_missing: Literal[True],
) -> list[dict[str, Any]]
get_many(keys, *, collection=None, raise_on_missing=False)

Retrieve multiple values by key from the specified collection.

Parameters:

Name Type Description Default
keys Sequence[str]

The keys to retrieve the values from.

required
collection str | None

The collection to retrieve keys from. If no collection is provided, it will use the default collection.

None

Returns:

Type Description
list[dict[str, Any]] | list[dict[str, Any] | None]

The values for the keys, or [] if the key is not found.

put async

put(key, value, *, collection=None, ttl=None)

Store a key-value pair in the specified collection with optional TTL.

Parameters:

Name Type Description Default
key str

The key to store the value in.

required
value Mapping[str, Any]

The value to store.

required
collection str | None

The collection to store the value in. If no collection is provided, it will use the default collection.

None
ttl SupportsFloat | None

The optional time-to-live (expiry duration) for the key-value pair. Defaults to no TTL. Note: The backend store will convert the provided format to its own internal format.

None

put_many async

put_many(keys, values, *, collection=None, ttl=None)

Store multiple key-value pairs in the specified collection.

Parameters:

Name Type Description Default
keys Sequence[str]

The keys to store the values in.

required
values Sequence[Mapping[str, Any]]

The values to store.

required
collection str | None

The collection to store keys in. If no collection is provided, it will use the default collection.

None
ttl SupportsFloat | None

The optional time-to-live (expiry duration) for all key-value pairs. The same TTL will be applied to all items in the batch. Defaults to no TTL. Note: The backend store will convert the provided format to its own internal format.

None

ttl async

ttl(
    key: str,
    *,
    collection: str | None = None,
    raise_on_missing: Literal[False] = False,
) -> tuple[dict[str, Any] | None, float | None]
ttl(
    key: str, *, collection: str | None = None, raise_on_missing: Literal[True]
) -> tuple[dict[str, Any], float | None]
ttl(key, *, collection=None, raise_on_missing=False)

Retrieve the value and TTL information for a key-value pair from the specified collection.

Parameters:

Name Type Description Default
key str

The key to retrieve the TTL information from.

required
collection str | None

The collection to retrieve the TTL information from. If no collection is provided, it will use the default collection.

None

Returns:

Type Description
tuple[dict[str, Any] | None, float | None]

The value and TTL information for the key. If the key is not found, (None, None) will be returned.

ttl_many async

ttl_many(
    keys: Sequence[str],
    *,
    collection: str | None = None,
    raise_on_missing: Literal[False] = False,
) -> list[tuple[dict[str, Any] | None, float | None]]
ttl_many(
    keys: Sequence[str],
    *,
    collection: str | None = None,
    raise_on_missing: Literal[True],
) -> list[tuple[dict[str, Any], float | None]]
ttl_many(keys, *, collection=None, raise_on_missing=False)

Retrieve multiple values and TTL information by key from the specified collection.

Parameters:

Name Type Description Default
keys Sequence[str]

The keys to retrieve the values and TTL information from.

required
collection str | None

The collection to retrieve keys from. If no collection is provided, it will use the default collection.

None

Use Cases

  • Enforcing required data
  • Fail-fast behavior
  • APIs where missing data is an error

Example

from key_value.aio.stores.memory import MemoryStore
from key_value.aio.adapters.raise_on_missing import RaiseOnMissingAdapter
from key_value.shared.errors import KeyNotFoundError

adapter = RaiseOnMissingAdapter(
    key_value=MemoryStore()
)

# Store a value
await adapter.put(key="user:123", value={"name": "Alice"}, collection="users")

# Get existing key - works normally
user = await adapter.get(key="user:123", collection="users")
print(user)  # {"name": "Alice"}

# Get missing key - raises error
try:
    user = await adapter.get(key="user:999", collection="users")
except KeyNotFoundError as e:
    print(f"Key not found: {e}")

Batch Operations

The RaiseOnMissingAdapter also affects batch operations:

# If any key is missing, raises KeyNotFoundError
try:
    users = await adapter.get_many(
        keys=["user:1", "user:999", "user:3"],
        collection="users"
    )
except KeyNotFoundError as e:
    print(f"One or more keys not found: {e}")

Combining Adapters and Wrappers

You can combine adapters with wrappers by wrapping the store before passing it to the adapter:

from pydantic import BaseModel
from key_value.aio.stores.memory import MemoryStore
from key_value.aio.wrappers.encryption.fernet import FernetEncryptionWrapper
from key_value.aio.wrappers.compression import CompressionWrapper
from key_value.aio.adapters.pydantic import PydanticAdapter
from cryptography.fernet import Fernet

class User(BaseModel):
    name: str
    email: str

# Create encrypted + compressed store
wrapped_store = CompressionWrapper(
    key_value=FernetEncryptionWrapper(
        key_value=MemoryStore(),
        fernet=Fernet(Fernet.generate_key())
    )
)

# Wrap with PydanticAdapter for type safety
adapter = PydanticAdapter(
    key_value=wrapped_store,
    pydantic_model=User
)

# Now you have type-safe, encrypted, and compressed storage!
await adapter.put(key="user:123", value=User(name="Alice", email="alice@example.com"))

Creating Custom Adapters

To create a custom adapter, wrap an AsyncKeyValue instance and provide your own API:

from key_value.aio.protocols.key_value import AsyncKeyValue

class CustomAdapter:
    def __init__(self, key_value: AsyncKeyValue):
        self._key_value = key_value

    async def custom_method(self, key: str) -> dict:
        # Implement custom logic
        value = await self._key_value.get(key=key, collection="custom")
        if value is None:
            return {}
        return value

See the API Reference for complete adapter documentation.